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Abstract. At the early stage of drug discovery, many thousands of chem-
ical compounds can be synthesized and tested (assayed) for potency
(activity) with high throughput screening (HTS). With ever-increasing
numbers of compounds to be tested (now often in the neighborhood of
500,000) it remains a challenge to find strategies via sequential design
that reduce costs while locating classes of active compounds.

Initial screening of a modest number of selected compounds (first-
stage) is used to construct a structure–activity relationship (SAR). Based
on this model, a second-stage sample is selected, the SAR updated and,
if no more sampling is done, the activities of not yet tested compounds
are predicted. Instead of stopping, the SAR could be used to determine
another stage of sampling after which the SAR is updated and the pro-
cess repeated.

We use existing data on the potency and chemical structure of 70,223
compounds to investigate various sequential testing schemes. Evidence
on two assays supports the conclusion that a rather small number of
samples selected according to the proposed scheme can more than triple
the rate at which active compounds are identified and also produce SARs
effective for identifying chemical structure. A different set of 52,883 com-
pounds is used to confirm our findings.

One surprising conclusion of the study is that the design of the ini-
tial sample stage may be unimportant: random selection or systematic
methods based on chemical structures are equally effective.

Key words and phrases: Combinatorial chemistry, data mining,
high throughput screening, recursive partitioning, sequential design,
structure–activity relationship.
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1. INTRODUCTION

The search for a new drug to combat a disease
begins with the development of an understanding
about how the disease manifests itself on a molec-
ular level. Once the molecular target, typically in
the form of a protein, has been identified, biolog-
ical assays are developed that allow the testing
(screening) of compounds with respect to their abil-
ity to interact with the protein. For this purpose,
automated screening systems are available that,
depending on the assay, allow the screening of hun-
dreds to thousands of compounds a day. The search
is for “lead” compounds which eventually can be
modified to produce new and effective drugs.
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Corporate chemical databases of compounds that
are available for testing can contain hundreds of
thousands of molecules. In addition, compounds
are available from commercial sources or can be
obtained through combinatorial synthesis from
elementary building blocks (Cortese, 1996). The
number of compounds in virtual libraries, a collec-
tion of theoretically possible but not yet synthesized
molecules, can be even larger. The introduction of
high throughput screening (HTS) allows the testing
of large numbers of compounds in a comparatively
short time. Exhaustive screening of compound col-
lections, despite miniaturization efforts (Burbaum,
1998), is impractical in view of the ever-increasing
size of the collections. A systematic approach via a
sequential search that tests a comparatively small
number of molecules in an inventory and identi-
fies structural features that might then guide the
selection process towards selecting more effective
compounds is therefore of great practical value. In
order to explore such strategies, we used historic
data from the complete screening of two different
compound libraries in two different assays. See
Figure 1.

Such sequential search schemes in the context
of drug discovery face a number of daunting obsta-
cles. First, the size of the space of compounds to be
searched is in the tens of thousands at a minimum
and can be in the millions to billions for virtual
libraries. Second, the spaces themselves are highly
complex. A molecule may be described at many
levels of “accuracy,” ranging from comparatively
simple topological descriptions of dimension in the
thousands to difficult to compute but fewer descrip-
tions arising from quantum chemistry calculations.
Third, the number of compounds in the space that

Fig. 1. Sequential screening process. An initial compound set is
screened and statistically analyzed giving a model that describes
compound features associated with activity. These structure–
activity rules are used to select additional molecules for screening
from the available compound collection. The combined data set
is again statistically analyzed. The cycle is repeated until com-
pounds are selected for atom-by-atom optimization.

have adequately high potency is very small, typ-
ically less than 0.5%. Fourth, the target of the
search is not completely precise: the search is
not only for high potencies but also for a vari-
ety of chemical structures associated with high
potency that medicinal chemists can use to take
follow-up steps in synthesizing new molecules.
The chemists need multiple chemical classes as
tractable starting points for synthetic modification
because compounds, besides being potent, need to
meet requirements about toxicity, side effects, dura-
tion of effect and specificity. Roughly, what has to
be faced is a problem of searching a potency surface
over a large discrete space of very high dimension
for a variety of high peaks.

Further constraints arise because of practical con-
siderations. High set-up costs at each stage preclude
a purely sequential scheme, so we are limited to a
small number of stages. Being first to market a new
drug can lead to gains in millions of dollars per day;
this value of time imposes limitations on computa-
tional and data analytic strategies.

Several fundamental statistical issues are to be
faced when implementing a sequential scheme.
In order to start the search, compounds must
be selected for testing in a first stage. At subse-
quent stages, the selection of additional compounds
is based on the potencies found in testing the
compounds selected at previous stages. Implicit
is the use of the data to develop a relationship
between the geometry of the space (the structure
of the molecules) and the biological activity (the
potency measured by the assay). The chemistry
and the geometry are intertwined and affect the
development of useful structure–activity relation-
ships (SAR). Further questions arise about the
number of stages that are needed as well as the
number of compounds to be selected at each stage.

We describe a sequential scheme that takes up
these basic issues via a specific case study involv-
ing a space of 70,223 compounds with known activ-
ities. The goal is to propose a strategy that is both
effective and can be implemented in practice. The
issues mentioned above are discussed and answers
proposed and confirmed in additional examples and
studies.

Our conclusions, stated succinctly, are:

• Use a sequential approach.
• Design of a first-stage sample is unimportant—

random selection is hard to beat.
• Careful design of the next stages is advanta-

geous.
• Two stages are enough.

We have not attempted to explore the challenging
question of whether a sequential design problem can
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be precisely formulated and analyzed in our setting.
The barriers to doing so are formidable, not the least
being the large dimension of the space of descriptors
and the interactions among them.

Section 2 describes the initial data set and chem-
ical features for the case study. All the potencies
are available for this data set. But we proceed in
ignorance of this fact until the final step of our
study where we use the unselected compounds to
validate the procedures and compute their per-
formance characteristics. In Section 3 we review
recursive partitioning and the particular statis-
tical classification method used to establish the
structure–activity relationship. Of prime impor-
tance is that the methods run very rapidly on
large numbers of compounds, each described by a
large dimensional vector of descriptors. The factors
expected to be influential on the performance of our
sequential scheme are discussed in Section 4. The
main questions to be explored are how to select
compounds and how many to select at the various
stages of the sequential search scheme. Section 5
provides the layout of our initial experiment to iden-
tify a good screening strategy and Section 6 gives
the analysis of the results. Some additional anal-
yses exploring specific questions are discussed in
Section 7. Confirmation experiments are described
in Section 8. Section 9 discusses some future direc-
tions of investigation and also provides references
to alternative approaches for modelling structure–
activity relationships. Concluding remarks follow
in Section 10.

As a result of our investigations, sequential
screening is now routinely used by GlaxoSmithKline
scientists and has helped shorten the time needed
to provide the medicinal chemists with interesting
chemical structures for further optimization. Cen-
tral to the approach is classification via recursive
partitioning. The design (selection of compounds) at
each of the individual stages appears to be of rela-
tively minor importance. Results from applying the
described approach to screening over 160,000 com-
pounds were recently reported in Jones-Hertzog,
Mukhopadhyay, Keefer and Young (2000).

2. THE TESTBED DATA

The data set used as a testbed for the methods
contains the potencies, together with a description
of the chemical structure, for each of 70,223 com-
pounds from an assay carried out by GlaxoSmith-
Kline scientists.

The assay measures the potency of each of
the 70,223 compounds by recording their ability
to bind to a protein and displace a specific (to the

assay) standard compound that naturally binds in a
cleft of the protein. The analogy of a “lock and key”
is suggestive of the binding process. When a com-
pound binds to a protein, a recordable color change
can be observed. The intensity of this color change
is a measure of the compound’s ability to bind to
the protein; this intensity defines potency.

Generally, the uncertainty associated with mea-
suring the potency of a compound will affect the
performance of any discovery procedure. We will
not attempt to take this into account below. Preci-
sion is to some extent sacrificed for speed and easy
logistics.

It is common to apply a logarithmic transforma-
tion to the data in order to reduce the skewness
of the distribution and to remove a possible depen-
dence between the mean and the variability in the
response. Some characteristics of the 70,223 loge-
potencies (we shall hereafter use loge-potency as the
measure of potency) are listed in Table 1.

The chemical structure of molecules can be
described in several ways. A very basic descrip-
tion consists of the list of atoms that constitute the
compound. Alternatively, we can use counts of frag-
ments or functional groups referring to entities of
atoms. For our study we used a topological descrip-
tor based on atom pairs; see Carhart, Smith and
Venkataraghavan (1985). For any two nonhydrogen
atoms, Atom 1 and Atom 2, there typically are many
paths of successive bonds and atoms in the com-
pound that link Atom 1 and Atom 2. A path with
the fewest number of atoms between Atom 1 and
Atom 2 is called a minimal path and the number
of atoms in such a minimal path is the topolog-
ical distance between Atom 1 and Atom 2. Each
atom pair is then of the form �Atom 1 description�-
�topological distance�-�Atom 2 description�. The
description of an atom consists of the elemental
name, the number of bonds attached to it as well
as the number of π-electrons in these bonds. For
example, the description of a carbon atom which is
attached to two nonhydrogen atoms and shares one
π-electron with its neighbors is denoted by C �2�1�.
Thus, even atoms of the same type, two carbons,
for example, are distinguished if they differ in the
number of bonds attached to them and the number
of π-electrons.

Table 1
Summary statistics of loge-potencies∗

min q25 median q75 max mean stdv

−1�190 0.837 0.918 1.012 3.102 0.927 0.166

∗The 25% and 75% quantiles are denoted by q25 and q75,
respectively.
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Although possible, multiple occurrences of the
same atom pair in a molecule are not accounted
for in our descriptors. Among the 70,223 molecules,
8189 different atom pairs were found. The result-
ing molecular descriptions are then bitstrings of
length 8189, where one and zero indicate the pres-
ence or absence of the corresponding atom pair.
These vectors were produced using software devel-
oped by A. Rusinko based upon algorithms given in
Carhart, Smith and Venkataraghavan (1985). Being
able to rapidly produce descriptors that capture the
important features of the chemical structure of a
molecule is important. We cannot afford to take
physical measurements to characterize compounds.

The number of atom pairs that occur in a com-
pound varies greatly; see Figure 2. There are a few
compounds with many atom pairs and a few with a
small number of atom pairs. Atom pairs that occur
in all compounds are not included; such pairs pro-
vide no information. The “biggest” compound con-
tains 603 of the total 8189 atom pairs. For most
compounds, the number of atom pairs is in the range
from 80 to 150. There are atom pairs that occur in
very few compounds; there are other atom pairs that
appear in over 50,000 in the set of 70,223.

Another readily computed descriptor for a mole-
cule is its Burden number, introduced by Burden
(1989). The Burden number is a property of the
connectivity matrix of a compound. The definition
of this matrix starts by (arbitrarily) numbering the
n nonhydrogen atoms occurring in the structure
1� � � � � n. Then, an n × n-matrix is formed con-
taining on its diagonal the atomic number of each
atom, that is, the number of protons in the atomic

Fig. 2. Number of compounds containing a given number of atom pairs.

nucleus. The off-diagonal elements are chosen as
positive real numbers that depend on whether
two atoms are neighbors and, if so, on the type of
bond between them. Finally, the Burden number is
defined as the smallest eigenvalue of this connec-
tivity matrix. While other eigenvalues may also be
useful, often only the smallest one is considered.

Though a relatively “coarse” description of a
molecule, the Burden numbers are attractive
because of their one-dimensional nature and the
comparative ease of their computation. Moreover,
two molecules with close Burden numbers often
appear similar when comparing their chemical
structures (e.g., by comparing numbers of frag-
ments or functional groups two molecules have and
have not in common).

Whereas it is relatively cheap and easy to com-
pute the descriptors of chemical structures of
compounds, it is extremely expensive and time-
consuming to measure the potencies of an entire
collection of chemical compounds. The above testbed
data set is one of a few rare occasions where all
compounds were tested. A very practical ques-
tion is whether it is possible to find most of the
potent chemicals by testing only a portion of the
compounds in a collection. The testbed data set
is used to demonstrate one such strategy in this
paper. Thus, in our proposed sequential procedures
(see Section 4), we proceed in ignorance of the
potency value of a compound unless it is selected.
Potency values of unselected compounds will be
used only in the final step when we validate the
procedures.
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3. RECURSIVE PARTITIONING

The analysis of data sets with over 70,000 obser-
vations and about 8000 independent variables is
a formidable computational task. The underlying
relationship between the response (potency) and the
independent variables (atom pairs) could involve
nonlinearities, thresholds and interactions among
the explanatory variables. Other complications
result from the possibility that compounds may
bind in different ways: some compounds in the data
set may act through one mechanism while others
act through a different mechanism. Classical meth-
ods such as regression analysis, stepwise regression
or principal components regression are likely to be
compromised in these circumstances depending on
how the predictor variables are chosen.

A less parametric method, capable of identi-
fying important structural variables and their
interactions, is recursive partitioning, a tree struc-
tured approach to regression and classification. The
observations are partitioned by a sequence of splits
(using the independent variables) resulting in a set
of terminal nodes. The path leading to each ter-
minal node reveals structural information about
the compounds living in that node. This structural
information can then be associated with the specific
molecular features that divide the compounds into
activity classes.

FIRM (formal inference-based recursive model-
ing) was proposed by Hawkins and Kass (1982)
and is a recursive partitioning algorithm based
on hypothesis testing (see also Hawkins, 1994).
The algorithm is fast and can be modified to ana-
lyze large numbers of descriptors. In our case the
explanatory variables are binary and the data
matrix consisting of 70,223 rows (corresponding
to compounds) and 8189 columns (corresponding
to atom pairs) is sparse. According to Figure 2,
most compounds have fewer than 250 atom pairs
and thus most rows will contain fewer than 250
ones. The sparsity of the matrix enabled Rusinko,
Farmen, Lambert, Brown and Young (1999) to
develop specialized software for statistical classifi-
cation of activities of molecules (SCAM), for rapid
computation of a recursive partitioning.

Other versions of recursive partitioning have
been implemented in the literature. Most notable
of these is CART (classification and regression
trees) by Breiman, Friedman, Olshen and Stone
(1984), which can be applied to both continuous
and categorical response data sets. CART relies
on sophisticated cross-validation and pruning tech-
niques to determine the size of the final tree and its
terminal nodes. The very general nature of CART
makes it a very flexible tool that can be used in a

wide variety of applications, but might not be the
most efficient choice for the types of data we are
working with. In addition, SCAM has a built-in
utility that allows the medicinal chemist to inter-
actively view the chemical structures of molecules.
Detailed comparisons of CART and SCAM with
respect to computing time are still undetermined.

SCAM uses a simple t-test splitting criterion to
select a binary split at every intermediate node.
The t-test is done with a Bonferroni adjusted
p-value (see Westfall and Young, 1993, e.g.) to pro-
tect against excessive splitting resulting from the
multitude of possible splits. The resulting SCAM
tree looks like a CART tree with binary splits. The
criterion for the best split of a node is similar, but
the pruning mechanisms and stopping rules are
different.

As an example, consider 10,000 compounds
selected randomly from all 70,223 molecules. The
result of recursive partitioning applied to this
example is displayed as a tree in Figure 3. The
first step of the algorithm splits the data set into
two groups according to the absence (left branch)
or presence (right branch) of atom pair AP1. Based
on a two-sample t-test, the Bonferroni adjusted
p-value associated with this split is 2.25E-6. (Here
and in the sequel aE-b is a×10−b.) Splits are called
significant when the adjusted p-value is below 0.01.
Splits on the same atom pair are possible in differ-
ent parts of the tree.

The raw p-value, also reported in each node,
is 3.32E-10. Bonferroni adjustment multiplies this
by the number of splits that are possible at each
node. Note that the number of possible splits is
less than 8189 because, among the 10,000 selected
compounds, some of the explanatory variables
might either be constant or perfectly correlated.
The adjustment removes perfectly correlated vari-
ables, as well as variables that are constant, zero
or one.

The SCAM program permits control of the mini-
mum split size (MSS), which is defined as the min-
imum number of compounds required to be in each
daughter node after the split. A low value of MSS
can create splits that put too few compounds in one
of the two daughter nodes and might thus focus on
outliers rather than more general structural fea-
tures. On the other hand, if the value is too high
the search for a significant split might fail. We fol-
lowed a general process of setting MSS relatively
large at the beginning of the tree-building process
and progressively decreasing MSS as the tree pro-
gressed. Splitting of a tree stops when MSS equal
to two does not allow further splits of any of the
current terminal nodes.
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Fig. 3. SCAM tree based on 10�000 randomly selected compounds. Not shown are two further splits of node N0000 obtained by setting
MSS equal to 2� This leads to a final junk pool of size 8573�

In the display of the tree, the number of com-
pounds is reported for each node. Also given are
the mean of the potencies in the node, the standard
deviation and the standard error of the mean. We
are particularly interested in splits where the com-
pounds in the node on the right (atom pair present)
show a higher average than those in the left node
(atom pair missing). These are called positive rules,
because they identify atom pairs associated with
(high) potency. As an example, the splits of nodes
N0 and N11 in Figure 3 give positive rules. Sim-
ilarly, the presence of an atom pair leading to a
significantly lower average than its absence will be
called a negative rule; see, for example, the splits of
nodes N00 and N10 in Figure 3. The leftmost ter-
minal node N0 · · ·0 is not defined by the presence of
any atom pairs (no positive rules); we refer to it as
the “junk” node.

Using the tree, any untested compound is pre-
dicted to belong to the terminal node determined
by its atom pair description, and its potency is pre-
dicted to be the average potency in that terminal

node. Presented with an untested compound, the
tree will predict the potency. Additionally, the rules
defining terminal nodes with high average potency
suggest molecular features important for binding.

Note. A tree as shown in Figure 3 can also be
regarded as a (linear) regression tree by taking

log�potency� = γ0 + γ1�1 −X1��1 −X3��1 −X7�X8

+γ2�1 −X1��1 −X3�X7

+γ3�1 −X1�X3 + γ4X1�1 −X2�
× �1 −X4��1 −X6� + γ5X1�1 −X2�
× �1 −X4�X6 + γ6X1�1 −X2�X4

+γ7X1X2�1 −X5� + γ8X1X2X5

+ error�

Here Xk is the binary explanatory variable indicat-
ing whether the kth atom pair occurs in a compound
or not, k = 1� � � � �8. The least squares estimates of
γ0� γ1� � � � � γ8 are related to the average potencies in
the terminal nodes from left to right.



160 M. ABT ET AL.

The t-test with Bonferroni adjustment replaces
the cross-validation and pruning techniques used
in CART and makes computation tractable. The
often spectacularly small p-values encountered in
this approach should not be taken too seriously.
Our analysis is exploratory; we want to find good
regions of the chemical space and do not want to
be led astray too often. Exceedingly small p-values
arise because of the large sample sizes and also
arise when binding is governed by a relatively few
sharp features.

The collection of 70,223 compounds under consid-
eration, like many such collections, does not cover
a large part of “chemical space.” Chemists often
synthesize many compounds that are similar to a
useful compound so there are likely to be substan-
tial numbers of closely related compounds in the
collection—a collection is more like a star cluster
or galaxy than a uniform random set. Nonetheless,
the methodology we use, in essence an exploratory
device, has useful implications as we shall see
below.

4. FACTORS INVOLVED IN EVALUATING
SEQUENTIAL SCHEMES

The first stage of a sequential approach as
depicted in Figure 1 requires specification of an ini-
tial sample size and a strategy to select the sample.
Once done, and the potencies obtained, designing a
second stage of sampling should exploit the infor-
mation gathered in the first stage. This process can
be continued over several cycles of selection.

A general and more encompassing sequential
decision approach would specify appropriate loss
functions, perhaps a prior distribution on the func-
tion describing the connection between structure
and activity, and compute solutions. It is unclear
to us whether a procedure is available that is com-
putationally feasible for the problems of the scale
presented here.

For the testbed problem described in Section 2 we
will consider five factors that could play an essential
role in defining a sequential strategy. To carry out
an initial screening study to determine the most rel-
evant of those factors, we will consider each of them
at only two levels.

N1 Number of First-stage Samples

In determining an initial sample size on heuristic
grounds we took into account two conditions. First,
because the analysis based on the initial sample
relies on constructing a tree, this tree should have
several terminal nodes with positive rules in order
to be useful. Second, practicing chemists believed

that far more than 10,000 (of the more than 70,000)
compounds would have to be tested. After careful
consideration, we chose the two levels of the factor
N1 to be 5000 and 10,000.

D1 Design of First Stage

The design for the first-stage sample can depend
only upon the information about the chemical struc-
tures available. Given a distance on the space of
compounds we could, in principle, select an opti-
mum set following criteria and methods described in
Johnson, Moore, and Ylvisaker (1990) or Haaland,
McMillan, Nychka and Welch (1994). Similarity
indices such as the ones described in Finn (1996)
could provide such measures of distance between
compounds. However, the computational effort
required to obtain designs that optimize some cri-
terion is beyond current capabilities for problems
of the scale facing us. We therefore introduce two
alternative strategies.

The first strategy rank orders the compounds
by their Burden numbers. Then, starting with the
compound with the largest Burden number, we
successively choose every seventh compound until
a sample of size 10,000 is obtained. The design
of size 5000 is obtained by selecting every other
compound from the set of size 10,000. We refer
to this method as systematic sampling by Burden
numbers, SSBN.

The second strategy uses clustering, ideally to
form clusters of compounds similar within the
cluster but dissimilar between clusters. Mono-
thetic clustering as described in Kaufman and
Rousseeuw (1990) seemed an appropriate tool for
the binary atom pair descriptors at hand. How-
ever, in contrast to their approach, we define the
similarity between two compounds as the ratio of
the number of atom pairs they have in common to
the total number of atom pairs occurring in either
of the two compounds. This index dates back to
Jaccard (1908) but nowadays gains increasing pop-
ularity as the Tanimoto coefficient; see, for example,
Van Drie and Lajiness (1998). It is used because
of the asymmetry in the descriptors. For any two
molecules, having an atom pair in common is more
informative than for both molecules to have the
same atom pair missing. We refer to this clustering
on atom pairs by CLAP.

Approximately the same number of compounds
was selected from each cluster to obtain a start-
ing set of 10,000. The selection within each cluster
was made based on the rank ordering by Burden
numbers as described above. A first-stage design of
size 5000 was obtained by choosing every other com-
pound within each cluster.
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ST Number of Stages

In the normal course of business it is impractical
to employ a fully sequential procedure, or even one
that requires more than two or three stages (count-
ing the initial stage) of selection and assay. There-
fore, the two levels of the factor ST are 2 and 3.

N2 Sample Size at Additional Stages

An arbitrary decision was made to restrict atten-
tion to procedures that either take a total of 2500
or a total of 5000 new samples after the first stage.
If ST = 3, equal numbers of samples are taken at
both stages 2 and 3. Thus, a three-stage procedure
with 2500 new samples means that 1250 samples
are taken at each of the two additional stages.

D2 Design of Additional Stages

Which compounds to select at the subsequent
stages needs attention. We start by defining a good
node as one that is not the junk node and where
the average potency (the observed average from the
tested compounds of earlier stages ending up in
this node) is greater than 1.05. This value is chosen
rather arbitrarily and approximately corresponds
to the upper empirical 15% point of the data. It is
possible, though highly unusual and not yet encoun-
tered, that the junk node itself has average potency
greater than 1.05. In any case the treatment of the
junk node is as described below. The nodes that are
neither good nor junk are called poor. All untested
compounds are classified (predicted) to lie in one of
the terminal nodes.

It appears reasonable to select the second-stage
sample from those compounds predicted to lie in
the good nodes. However, there may be insufficient
numbers of such compounds. Moreover, there may
be many good compounds in the other nodes, par-
ticularly in the junk pool. Accordingly, we decided
to compare two different strategies. In one strat-
egy we select (if possible) 90% of the additional
compounds from good nodes of the previously con-
structed tree and the other 10% from the remaining
nodes (90/10). The second strategy aims to select
equal numbers from the good nodes as from the
remaining nodes (50/50). More explicitly:

(I) Good node selection. Start with the good node
with highest average potency. Compounds
predicted to be in this node are chosen until
90% (or 50%) of the N2/(ST−1) additional
samples are found. If there are too few com-
pounds predicted to be in this node, proceed
to the good node with the next largest aver-
age. If there are too few compounds found
in the good nodes to date, continue sampling

Table 2
Five factors characterizing a sequential screening scheme∗

Factor Symbol Levels

Number of first stage samples N1 5000, 10,000
Design of first stage D1 SSBN, CLAP
Number of stages ST 2, 3
Sample size at additional stages N2 2500, 5000
Design of additional stages D2 90/10, 50/50

∗Each factor is studied at two levels

from the terminal node (but not the junk
node) with the next largest average potency.

(II) Similarity selection. The remaining 10% (or
50%) of the N2/(ST−1) additional samples
are selected from terminal nodes not sam-
pled in (I). This includes the junk node, poor
nodes and, possibly, some good nodes. To
do so, all (tested) compounds from previ-
ous stages that fall in these nodes are rank
ordered by potency. Then, starting with the
most potent of these compounds, we take
the five nearest neighbors based on Bur-
den numbers and continue until the desired
number of N2/(ST−1) additional samples is
reached. The anticipation is that chemical
structures are added that have atom pair
features potentially leading to positive rules
in the next round of recursive partitioning; it
is similar to the practice of testing new com-
pounds with substructures that are similar
to active compounds.

A summary of all five factors is provided in
Table 2.

Variations on the rules described in (I) and (II)
can be explored. For example, instead of solely using
the average potency in a node, the variability might
be taken into account as well. We will not pursue
this point.

5. EXPERIMENTAL LAYOUT AND
EVALUATION CRITERIA

In order to investigate the effect of the five factors
in Table 2, we could consider all 25 = 32 possible
combinations and evaluate the performance of each
of the resulting screening strategies. This would
allow the estimation of the main effect of each factor
as well as all higher order interactions. To reduce
the computational effort and, on the premise that
interaction effects of order higher than two may be
negligible, we use a half fraction of the complete 25

design (Box and Draper, 1987, page 148), leading to
16 different screening strategies. These are shown
in the left part of Table 3. This design allows the
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Table 3
A 25−1 design for five factors leading to 16 different screening
strategies and the total number N of compounds that need

testing under each strategy∗

Strategy N1 D1 ST N2 D2 N I100

1 10,000 CLAP 3 2500 90/10 12,500 1.11
2 5000 CLAP 3 2500 50/50 7500 2.06
3 5000 CLAP 3 5000 90/10 10,000 1.81
4 10,000 CLAP 3 5000 50/50 15,000 1.69
5 5000 SSBN 3 2500 90/10 7500 0.66
6 10,000 SSBN 3 2500 50/50 12,500 1.07
7 10,000 SSBN 3 5000 90/10 15,000 1.02
8 5000 SSBN 3 5000 50/50 10,000 1.31
9 5000 CLAP 2 2500 90/10 7500 1.26
10 10,000 CLAP 2 2500 50/50 12,500 1.85
11 10,000 CLAP 2 5000 90/10 15,000 1.31
12 5000 CLAP 2 5000 50/50 10,000 1.71
13 10,000 SSBN 2 2500 90/10 12,500 0.83
14 5000 SSBN 2 2500 50/50 7500 1.29
15 5000 SSBN 2 5000 90/10 10,000 1.33
16 10,000 SSBN 2 5000 50/50 15,000 1.71

∗The last column gives the results for the evaluation criterion.

identification of all main effects and all two-factor
interactions.

Each of the 16 rows in Table 3 fully describes a
screening strategy. Recursive partitioning is applied
to the total of N compounds assayed. The result-
ing tree is then used to predict the activity of the
remaining 70,223 − N compounds. Of those, the
molecules predicted to be in good nodes will be
screened.

As mentioned earlier, lead compounds identi-
fied in screening campaigns generally need further
structural modifications to improve their biologi-
cal and chemical properties. To do so, a medicinal
chemist typically starts modifying a compound
by exchanging different functional groups of the
molecule. This approach is quite time-consuming
and thus only a few different and the most promis-
ing leads resulting from a screening campaign can
be considered. Due to these considerations, our
strategy focused on identifying the best 100 com-
pounds in a given collection. We refer to these as
the “top100” compounds, and the goal is to identify
as many of these as possible. The potencies of the
top100 compounds for the present data set range
from 1.682 to 3.102 on the logged scale.

From Table 3, note that the total number NT of
compounds tested for each of the 16 runs varies,
because NT is given by the sum of N and the addi-
tional compounds among the 70,223 − N that are
predicted to be in good nodes of the final tree. We
therefore compare the actual number of top100 com-
pounds found by each of the 16 strategies to the
expected number of top100 compounds we would

find by randomly selecting NT molecules among
the 70,223. More formally, we define

I100 =
number of top100 compounds found by

systematic screening
expected number of top100 compounds found by

random screening

as being the improvement of a systematic screening
strategy over random sampling. This is the quantity
reported in the last column of Table 3. Section 6
presents the analysis of these results.

6. EXPERIMENTAL ANALYSIS

To gain an initial impression of the most impor-
tant effects and as an initial step of our exploratory
analysis, we did an analysis of variance on I100.
All main effects and all two-factor interactions were
included. Figure 4 shows a half normal probability
plot of the resulting effects. Two factors, the design
of the first stage (D1) and the design of the addi-
tional stages (D2) appear to be most important, but
for reasons described below we ultimately revise our
conclusion about D1.

In Figure 5, boxplots for the two levels of each
factor display the main effects. Each boxplot is
based on eight values. Figure 5 supports the effects
found for D1 and D2. Clustering on atom pairs
(CLAP) appears superior to systematic sampling
by Burden numbers (SSBN). This seems plausible,
as atom pairs provide more detailed information
on the chemical structure of a compound than the
univariate Burden number. The result could be
compound selections that are more representative
of the entire collection, which in turn leads to a
better SCAM model.

The 90/10 split at the second-stage design seems
less effective than the 50/50 split. A three-stage pro-
cedure does not appear more effective than a two-
stage procedure. For later studies we therefore elect

Fig. 4. Half normal probability plot of the main effects and two-
factor interaction effects for I100.
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Fig. 5. Main effects of each factor for I100.

to not go beyond two stages and we also adopt the
50/50 split for D2.

Conclusions about N1 and N2 are unclear.
Whether N1 is 5000 or 10,000 does not seem
to matter much. The effect of N2 is ambiguous but
leans to the choice of N2 = 5000. As expected from
Figure 4, interaction plots (not shown here) did not
show evidence of strong interactions among the five
factors.

All results reported in Table 3 are based on two
initial compound selections (two fixed initial blocks)
of size 10,000, one chosen according to SSBN, the
other by CLAP. As a result the between block effects,
N1 and D1 are not reliably estimated. We do rely
on the estimates of ST, N2 and D2, the within block
effects. N1 and D1 are more closely studied in the
next section.

7. ADDITIONAL EXPERIMENTATION

The solution to the problem raised at the end
of the last section is to run some replicated initial
blocks. That is exactly what we did in the additional
experiments. The main findings can be summarized
as follows, and the details of the experiments are in
the subsections.

1. The method chosen for the selection of the
initial design appears unimportant (see
Section 7.1). Systematic approaches show
no benefits over a random selection. The effect
of D1 shown in Figure 3 and Figure 4 is thus
spurious.

2. No general recommendation is possible on
the size of the initial design (see Section 7.2).

Very small samples can suffice at the first stage
if they contain structure–activity information.

3. Sequential sampling is beneficial compared to
applying recursive partitioning to a one-step
selection (see Section 7.3).

7.1 Initial Sample Design

Figure 5 above suggests evidence for a strong
effect due to the choice of the initial design scheme.
This effect might be spurious, as the results in
Table 3 are based on fixed initial designs of sizes
5000 and 10,000 for each of CLAP and SSBN. Pos-
sible variability in the response could thus arise if
the starting points used for selecting those designs
are varied. In particular, for D1 = SSBN, we could
pick every seventh compound beginning with the
molecule having the second largest rather than the
largest Burden number.

To fully replicate the 16 runs several times with
varied SSBNs and CLAPs was computationally
prohibitive because of the logistical complexity of
the experiment. Instead we experimented by fixing
N1 = 10,000, ST = 2, N2 = 5000 and D2 = 50/50.
We then generated four different SSBN designs,
four different CLAP designs and four independent
random designs (RAND). The four SSBN designs
(see Section 4) were generated by picking every sev-
enth compound beginning with the molecule having
the kth largest Burden number, k = 1�2�3�4. Sim-
ilarly, to select the four CLAP designs, we simply
changed the starting compound for the system-
atic Burden number sampling within each cluster
without changing the underlying clustering of
the 70,223 compounds. Each of the twelve samples



164 M. ABT ET AL.

is used as a starting design (D1) for our sequential
screening method; the results obtained for I100 are
summarized in Table 4.

All three methods produce similar means and
substantial variability. The smaller variability
associated with CLAP does not overcome its compu-
tational disadvantages. The most surprising result
is that random selection does about as well as the
procedures using the chemical structures of the
compounds. One reason may be that the designs
all try to cover a very high (over 8000) dimensional
space and none can do so very effectively; see Young,
Farmen and Rusinko (1996). The near equivalence
of these three first-stage design schemes has been
borne out when using different assays and other
sets of compounds as well; see Section 8.

7.2 Initial Sample Size

Figure 5 indicates little effect on I100 from chang-
ing the size of the initial sample from 5000 to
10,000. To explore this further we fix the total sam-
ple size N at 15,000, and let the initial sample size
vary (N1 = 5000�7500�10�000). The levels for the
other factors were set at D1 = SSBN�ST = 2 and
D2 = 50/50. Again, four repeated samples were
taken as in Table 4; the results are summarized in
Table 5.

As the results in Table 5 show, increasing the
number of initial compounds selected does not nec-
essarily improve the overall hit ratios. The reason
is that even a large sample might provide little
information about the relationship between chem-
ical structure and activity and thus lead to a poor
selection of compounds for the later stages. For
N1 = 10,000, closer inspection of the trees showed
that among the four initial SCAM trees, three were
“good” in the sense of having at least three good
terminal nodes (see the discussion of D2 for the
definition of a “good” terminal node). Only two good
initial SCAM trees turned up when N1 = 5000 and
only one when N1 = 7500. This is what is reflected
in the results of Table 5.

Table 4
Response I100 for three different methods of selecting the initial

sample, each replicated four times

Sample SSBN CLAP RAND

1 1.17 1.17 0.97
2 1.51 1.33 1.34
3 1.71 1.48 1.79
4 1.87 1.69 2.00

mean 1.57 1.42 1.52
stdv 0.30 0.22 0.46

Table 5
Response I100 for three different initial sample sizes while

keeping the total sample size fixed

Sample N1=10000 N1=7500 N1=5000

1 1.17 0.97 1.18
2 1.51 1.06 1.23
3 1.71 1.08 1.42
4 1.87 1.32 1.46

mean 1.57 1.11 1.32
stdv 0.30 0.15 0.14

A conclusion that can be drawn from this experi-
ment is that the initial sample size should be large
enough to produce a tree with an adequate number,
three or more apparently, of good terminal nodes.
A possible approach would be to select an initial
sample of size 2500, say, build a tree and examine
its adequacy. Take another sample of 2500 if the
tree is inadequate. This runs against the obstacle of
set-up costs for each stage, but is essential because
going ahead with an inadequate tree will be of little
utility.

Table 5 exhibits a decrease in variability as
the initial sample size decreases. Since the total
sample size N is fixed, the second-stage sample
size increases as the initial sample size decreases.
Because the second-stage sample is expected to
be more homogeneous than the initial sample, a
decrease in variability should be expected.

7.3 Benefits from Sequential Sampling

Is there a benefit from the sequential strat-
egy? Starting with the compounds having the
first, second and third largest Burden number, we
systematically sampled 15,000 compounds. The
average values and standard deviations obtained
for I100 �1�05 ± 0�19� and I350 �1�00 ± 0�14� are
significantly worse than the average of the two cor-
responding columns headed SSBN in Table 4. There
appear to be real benefits from using a sequential
scheme.

8. CONFIRMATION EXPERIMENTS

Two experiments are used to validate the find-
ings of the proposed procedures. In the first experi-
ment, using the same set of 70,223 compounds and
the methods developed and analyzed above, a sec-
ond assay was explored to confirm the effectiveness
of the approach as well as the earlier conclusion
that neither the initial sample design nor the ini-
tial sample size play an important role. The factor
ST was fixed at two and N2 was set at 5000. For
D2 we used (I) and (II) (see Section 4) together with
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a 50/50 split. In the second experiment, a different
set of 52,883 compounds, each of which was tested
in two different assays, are studied.

In the first confirmation experiment, the combi-
nations of the levels of N1 and D1 produce four
runs. We also included a run with the initial design
being a random sample of size 5000. Each of the
five strategies was then replicated three times. The
results are shown in Table 6. For the first four runs,
the replicates were produced similar to those in
Table 4. Note that strategies 2 and 3 in Table 6
correspond to strategies 12 and 16 in Table 3.

Considering the three replicates for each run in
Table 6 as independent, an analysis of variance
of the first four rows of the data reveals no sig-
nificant effects. Again, observe the surprising fact
that RAND, while more variable, appears to be as
good as CLAP or SSBN for D1. For this assay, the
choice of N1 = 5000 is as productive as choosing
N1 = 10,000, reflecting the fact that N1 = 5000 had
already produced an adequate tree with three good
terminal nodes.

For further verification, we studied a set of
52,883 compounds with two different assays. We
chose ST = 2. Implementing the approach sug-
gested in Section 7.2, we used N1 = 2500 and found
that no further augmentation was necessary. We
chose N2 = N1, dropped CLAP and compared SSBN
and RAND. For D2 we used (Ia) and (II) together
with a 50/50 split, where (Ia) is a modification of
(I). (The modification is to accommodate the case
when there may be very few compounds predicted
to be in good terminal nodes of the first-stage tree.)

(Ia) Select compounds among those that are pre-
dicted to be in the node with the highest
average potency until 50% (or 90%) of the
N2/�ST − 1� additional samples are found. If
the number of compounds in this node is not
sufficient, go to the node with the next high-
est potency provided its average potency is at
least as large as the average potency of the
sample used to construct the tree. Continue
as long as possible; otherwise go to step (II).

Table 6
A confirmation experiment exploring N1 and D1 based on the

same 70�223 compounds tested in a different assay

Strategy N1 D1 I100 mean stdev

1 10,000 CLAP 1.85 1.95 2.27 2.02 0.22
2 5000 CLAP 1.90 2.16 2.18 2.08 0.16
3 10,000 SSBN 1.93 1.94 2.17 2.01 0.14
4 5000 SSBN 1.63 2.08 2.28 2.00 0.33
5 5000 RAND 1.66 1.71 2.57 1.98 0.51

Each of the two strategies was repeated four
times. The resulting ratios I100 are shown in Table 7.

Although different for the two assays, the results
again demonstrate the benefits from the sequential
sampling scheme. Compounds are often screened
in multiple assays to explore different biological
properties. A given set of descriptors might not be
equally effective in capturing the relevant chemi-
cal structures leading to favorable responses in all
assays. More importantly, the relative assay vari-
ability can vary among assays affecting the SAR
and the rate at which desirable compounds will be
detected. As Table 7 again shows, a systematically
selected initial sample does not lead to substantive
improvements over a random selection.

The hit ratios considered so far evaluate the per-
formance of the entire screening strategy. For the
52,883 compounds data sets, we also considered a
different criterion for comparing performance. The
goal is to evaluate the gain achieved after the ini-
tial sample, thus focusing on the ability of SCAM to
direct the search towards potent areas of the chem-
ical space. In the first-stage sample of size 2500
selected by SSBN we found five of the top100 com-
pounds. With N2 = 2500 a final tree is built and of
the remaining 47,883 molecules 728 are predicted
to be in good nodes. These are subjected to screen-
ing, and among the total of 3228 compounds assayed
after the first stage, 40 were found to be among the
top100. Therefore, using SCAM to preselect com-
pounds for assaying, top100 compounds turn up at
an average rate of 40/3228 = 0�0124 or, in other
words, one out of about 80 compounds assayed is
among the top100. Without the initial SCAM tree
to virtually prescreen the 52,883 − 2500 = 50,383
compounds, we might assay all of them to find all
the remaining 100 − 5 = 95 top100 compounds. On
average, top100 compounds would be discovered at
a rate of 95/50�383 = 0�0019, which corresponds
to one molecule out of about 526. The SCAM gain
rate relative to random sampling is now defined

Table 7
Response I100 for a second set of 52�883 compounds screened in

two different assays

Assay 1 Assay 2

Sample SSBN RAND SSBN RAND

1 4.16 4.00 2.07 1.91
2 4.92 5.21 3.43 1.83
3 4.42 2.77 2.82 2.33
4 4.10 3.80 1.63 2.59

mean 4.40 3.95 2.49 2.17
stdev 0.37 1.00 0.80 0.36
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Table 8
SCAM gain rate G100

∗

Assay 1 Assay 2

Sample SSBN RAND SSBN RAND

1 6.57 5.73 3.23 2.51
2 7.61 8.16 5.51 2.18
3 6.94 4.21 4.04 3.35
4 6.27 5.96 2.42 4.27

mean 6.85 6.01 3.80 3.08
stdev 0.58 1.63 1.32 0.94

∗The values are arranged in correspondence to those in Table 7.

as �40/3228�/�95/50�383� = 6�57. Table 8 summa-
rizes the SCAM gain rates G100 for both assays.
This indicates that SCAM can rapidly and efficiently
guide the process of compound selection to active
regions of the chemical space. This will be especially
useful, we believe, in dealing with virtual libraries.

9. OTHER DIRECTIONS

Several issues need fuller exploration. One is the
use of multiple trees in place of the “greedy” single
tree used above. Recently Tatsuoka, Gu, Sacks and
Young (2000) introduced predictors based on multi-
ple trees, tailored for accurate prediction of extreme
values. Variabilities of hit ratios from different ini-
tial samples might come from the lack of stability
of a SCAM tree and the difference in the number of
additional compounds predicted to be in good nodes.
Tatsuoka et al. (2000) note that predictors based on
multiple trees are more accurate and less variable
than the single SCAM tree. To reduce the variabili-
ties, a sequential strategy could be used in conjunc-
tion with multiple tree predictors; such a study is
now under way.

A second major question is connected with the
implications of measurement errors in the assay.
These errors ought to be incorporated into the
formulation of objective functions for comparing
strategies. Practice thus far indicates that, even
without taking the errors into account, the sequen-
tial strategies are effective and are currently in use
at GlaxoSmithKline (Jones-Hertzog et al., 2000).

A third issue to be addressed is the effect of
scaling up: treating hundreds of thousands of
compounds, not “merely” 70,000. Combinatorial
chemistry (Service, 1996) is one arena where such
scales (and greater ones) will be present. Combi-
natorial schemes allow the electronic generation
of databases of compounds by considering all com-
binations of a given group of molecular building
blocks. Because synthesis of molecules is not cheap
(it is even more expensive than typical assays),

new questions will arise here if we take the cost of
synthesis into account.

In practice, biological activity is not the only
quantity of interest. The same compounds are com-
monly tested in several assays to determine other
biological properties such as toxicity. Sequential
screening schemes that allow the handling of multi-
variate measures are currently under investigation.

A modified version of recursive partitioning allow-
ing for the extraction of multiple chemical features
at each node has recently been published by Cho,
Shen and Hermsmeier (2000). Gobbi, Poppinger and
Rohde (1997) used a genetic algorithm to identify
lead compounds. Although their approach certainly
also has the ability to identify good starting points
for future optimization by medicinal chemists, a dis-
advantage is that it does not clearly pinpoint the
relevant structural features. Friedman and Fisher
(1999) discussed a new algorithm for identifying
regions where some response is maximized over a
high dimensional space. Their approach can be seen
as a generalization of recursive partitioning, as it
divides the search space in more general types of
“boxes.” The method appears effective but has, to
the best of our knowledge, not yet been applied to
problems in the area of drug discovery.

Different statistical techniques for modeling
structure–activity relationships are used at the
later “compound optimization” stage of the drug
development process, where the medicinal chemists
systematically modify hits resulting from initial
screening campaigns in order to improve their bio-
logical properties. The number of compounds to be
dealt with might be in the hundreds only and the
molecules are generally also more homogeneous in
terms of their chemical structure. The most fre-
quently used statistical modeling tools at this point
are regression analysis (Patankar and Jurs, 2000),
partial least squares (PLS) (Helland, 1990), neural
networks (Kauffman and Jurs, 2000), or combina-
tions thereof (Viswanadhan, Mueller, Basak and
Weinstein, 1996). Many variants of these have been
developed and tuned to the needs of the chemists.
The recent conference proceedings of the Twelfth
European Symposium on Quantitative Structure–
Activity Relationships (Gundertofte and Jørgensen,
2000) cover applications of all of these.

10. SUMMARY AND CONCLUDING REMARKS

Exhaustive screening of libraries and other large
sets of chemical compounds is not uncommon for
finding good lead compounds in a drug discovery
process. Despite the automation of the processes of
synthesizing and assaying compounds, inefficiencies
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and costs can become prohibitive. Sequential screen-
ing strategies are potentially valuable for finding
potent lead compounds while controlling costs. A
class of procedures studied here combines simple
chemical descriptors of molecules, recursive par-
titioning and careful computational algorithms to
produce ad hoc sequential designs that are effective.
The potential merits of such tactics are now receiv-
ing some attention (Walters, Stahl and Murko,
1998). What we have presented here are studies of
how such methods can be implemented and ques-
tions that should be addressed. This is an arena
where statistical insight can be influential and one
that generates a variety of unexplored, interesting
problems.

Due to proprietary rights, the data sets used in
this work cannot, unfortunately, be made available
for public use. However, a data set containing activ-
ity data and structural information of over 30,000
compounds is available from the home page of the
National Cancer Institute at http://dtp.nci.nih.gov.
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